Minggu, 30 Desember 2018

"Transformasi Linier"

Assalammualaikum Wr.Wb

Nama saya Dhea Damayanti R (201831007), Saya adalah salah satu mahasiswa di STT-PLN Jakarta.


RESUME

"Transformasi Linier"
  Sekolah Tinggi Teknik PLN Jakarta
                                                  Dosen : Ibu Evy Yosritas, S,Si.M,Kom.









"Basis"

Assalammualaikum Wr.Wb

Nama saya Dhea Damayanti R (201831007), Saya adalah salah satu mahasiswa di STT-PLN Jakarta.


RESUME

"Basis"
  Sekolah Tinggi Teknik PLN Jakarta
                                                  Dosen : Ibu Evy Yosritas, S,Si.M,Kom.

BASIS RUANG DAN VEKTOR

Definisi / Pengertian Basis

  • Basis adalah himpunan vektor.
  • Basis juga bisa dianggap sebagai sistem koordinat.
  • Misalkan V ruang vektor dan S = { s 1, s 2 ,…, s n }. S disebut basis dari V.

Vektor Basis di Ruang R2

Vektor basis diruang R2 pada sumbu X dinyatakan dengan i, vektor satuan pada sumbu Y dinyatakan dengan j
Bentuk vektor baris ditulis sebagai berikut : e1 = (1,0), e2 = (0,1)

Vektor Basis di Ruang R3

Vektor basis diruang R3 pada sumbu X dinyatakan dengan i, pada sumbu Y dinyatakan dengan j, sedangkan vektor satuan pada sumbu Z dinyatakan dengan k.
Bentuk vektor baris ditulis sebagai berikut : e1 = (1,0,0), e2 = (0,1,0), e3 = (0,0,1)

Vektor di Ruang R2

  • Vektor terletak sepanjang sumbu koordinat X dan Y.
  • Vektor berada di R2 maka dikatakan vektor berada di bidang.

Vektor di Ruang R3

  • Vektor dalam ruang digambarkan dalam sistem koordinat ruang.
  • Sumbu X dan Y mendatar sedangkan sumbu Z vertikal.
  • Ketiga sumbu tersebut saling tegak lurus dan perpotongan dititik pangkal O (0,0,0).

Pengantar Vektor

  • Didalam Fisika dikenal 2 buah besaran, yaitu besaran skalar dan besaran vektor.
  • Skalar adalah besaran yang hanya memiliki nilai.
  • Contoh skalar : massa.
  • Vektor didefinisikan sebagai sebuah besaran yang memiliki nilai dan arah.
  • Contoh vektor : Kecepatan.

Notasi Vektor

  • Vektor merupakan garis berarah yang memiliki titik awal dan titik akhir.
  • Arah panah menunjukan arah vektor dan panjang vektor menunjukan besaran vektor.
  • Vektor dapat ditulis dengan huruf kecil tebal atau tanda bar.

Gambar Vektor

Aljabar Linier dan Matriks
Gambar Vektor
  • Titik pangkal di A
  • Titik ujung di B
  • Arah vektor di A menuju B
  • Besar vektor ditunjukan oleh panjang garis AB

Operasi-operasi Pada Vektor

  • Kesamaan dua vektor
  • Negatif sebuah vektor
  • Resultan 2 buah vektor
  • Penjumlahan vektor
  • Perkalian vektor dengan skalar

Kesamaan Dua Vektor

Suatu vektor dikatakan sama apabila memiliki panjang dan arah yang sama, dengan tidak memperhatikan titik pangkal.
Kesamaan Dua Vektor
Gambar Kesamaan Dua Vektor

Negatif Sebuah Vektor

Vektor (-a) adalah vektor yang memiliki arah berlawanan dengan vektor a tetapi panjangnya sama dengan vektor a.
Negatif Sebuah Vektor
Gambar Negatif Sebuah Vektor

Resultan 2 Buah Vektor

Resultan dua vektor u dan v adalah vektor w yang dibentuk dengan menempatkan titik pangkal vektor v pada titik ujung vektor v dan menghubungkan titik pangkal vektor u dengan titik ujung vektor v
Resultan 2 Buah Vektor
Gambar Resultan 2 Buah Vektor

Penjumlahan Vektor

Diketahui a dan b vektor–vektor di ruang yang komponen – komponennya adalah
a = ( a1,a2,a3 ) dan b = ( b1,b2,b3 )
Maka :
a + b = (a1 +b1, a2+b2, a3+b3 )
Contoh :
diketahui dua vektor a = i+2j-3k dan b = 2i+5j+4k, berapakah a+b ?

Perkalian Vektor dengan Skalar Aljabar Linier dan Matriks

Diketahui a vektor di ruang yang komponen – komponennya adalah a = ( a1,a2,a3 )
Maka k . a = ( ka1, ka2, ka3 )
Jika k > 0 maka searah dengan a
Jika k < 0 maka berlawanan arah dengan a
Contoh :
diketahui vektor a = i+2j-3k, maka 2a = ?

Panjang Vektor

Panjang sebuah vektor u disebut juga norma u dinyatakan dengan :
Contoh : hitunglah panjang vektor u = 3i+4j!

Jarak Euclidean Antara Dua Vektor

Jika p = (p1, p2,….pn) dan q = (q1, q2,…qn)
Contoh : diketahui p = (2i+3j) dan q = (5i + 6j), berapa jarak Euclideannya?

Contoh Penerapan Vektor dalam Klasifikasi Citra

Diketahui tiga buah wajah, yaitu Citra 1(Dilla), Citra 2 (Agil), dan Citra 3 (Alim)yang akan digunakan sebagai basis data untuk pengenalan pola wajah menggunakan komputer.
Beberap ciri untuk mengenali citra tersebut adalah dilihat dari standar deviasi intensitas warna dalam tiap-tiap citra σ, rata-ratanya µ, dan entropinya ℯ. Setelah ketiga ciri tersebut dihitung diperoleh data berikut:
Citra 1: σ=0,15      µ=40      ℯ=1,25
Citra 2: σ=0,05      µ=60      ℯ=2,35
Citra 3: σ=0,24      µ=53      ℯ=0,85
Kemudian diambil satu citra lagi, yaitu citra ke-4 sebagai citra uji.
Pada citra uji dihitung nilai-nilai ciri citra tersebut,diperoleh data berikut:
Citra 4: σ=0,23      µ=55      ℯ=0,82
Tentukan bagaimana komputer bisa mengenali citra ke-4?Dan siapakah nama dari citra ke-4 menurut hasil pengenalan komputer?


"Basis Dan Dimensi"

Assalammualaikum Wr.Wb

Nama saya Dhea Damayanti R (201831007), Saya adalah salah satu mahasiswa di STT-PLN Jakarta.


RESUME

"Basis Dan Dimensi"
  Sekolah Tinggi Teknik PLN Jakarta
                                                  Dosen : Ibu Evy Yosritas, S,Si.M,Kom.

Basis dan Dimensi


Gambar basis dimensi

Pengertian basis untuk ruang vektor V serupa dengan pengertian basis untuk Rn, yang telah kita kenal. Untuk mengenal basis, diperlukan pengertian membangun dan bebas linier. Pengertian membangun telah kita pelajari di materi sebelumnya yaitu kombinasi,bergantung, dan bebas linier . Dengan pengertian bebas linier, himpunan yang membangun V dapat diperkecil sedemikian mungkin sehingga himpunan yang baru tetap membangun V.




Definisi
Contoh :
Misalkan p(x) = 2 – 3x + x2 , q(x) = 1 + x – x2 , r(x) = 5 – 5x + x2 untuk setiap x real. Karena 2p + g – r = 0 maka {p, q, r} bergantung linier di P2
Sifat  :

 Definisi :
Ruang vektor tak nol V dikatakan berdimensi hingga, jika V mempunyai basis yang hingga. Banyaknya vektor dalam suatu basis untuk V disebut dimensi (V), disingkat dim(V). dimensi ruang vektor nol didefinisikan nol.
Contoh :
  1. Dimensi (Ân) = n sebab memiliki basis yang terdiri dari n vektor.
  2. Dimensi (Pn) = n + 1 sebab memiliki basis yang terdiri dari n + 1 vektor
  3. Jika M2 ruang vektor yang terdiri dari matriks 2x2 dengan komponen real maka dimensi (M2) = 4, sebab M2 mempunyai basis yang terdiri dari 4 unsur.
Sifat :
     Jika V ruang vektor berdimensi n, maka :

  1. Setiap himpunan m vektor di V dengan m > n, senantiasa bergantung linier
  2. Setiap himpunan n vektor di V yang bebas linier, membentuk basis untuk V
  3. Setiap himpunan n vektor di V yang membangun V, membentuk basis untuk V
  4. Setiap himpunan k vektor yang bebas linier di V, dengan k < n dapat diperluas menjadi suatu basis untuk V

Soal Latihan

1.       Diketahui 
      Tunjukkan K ruang bagian dari R3. Kemudian  tentukan suatu basis untuk K
2. Tentukan suatu basis dan dimensi ruang vektor Mmxn
3. Tentukan suatu basis dan dimensi ruang bagian dari Pn, berikut :
a.  {p Î Pn | p (1) = 0}                          b.  {p Î Pn | p’(1) = 0}